منابع مشابه
200x Low-dose PET Reconstruction using Deep Learning
Positron emission tomography (PET) is widely used in various clinical applications, including cancer diagnosis, heart disease and neuro disorders. The use of radioactive tracer in PET imaging raises concerns due to the risk of radiation exposure. To minimize this potential risk in PET imaging, efforts have been made to reduce the amount of radiotracer usage. However, lowing dose results in low ...
متن کاملDeep reconstruction model for dynamic PET images
Accurate and robust tomographic reconstruction from dynamic positron emission tomography (PET) acquired data is a difficult problem. Conventional methods, such as the maximum likelihood expectation maximization (MLEM) algorithm for reconstructing the activity distribution-based on individual frames, may lead to inaccurate results due to the checkerboard effect and limitation of photon counts. I...
متن کاملPET Image Reconstruction
Positron emission tomography (PET) scanners collect measurements of a patient’s in vivo radiotracer distribution. These measurements are reconstructed into cross-sectional images. Tomographic image reconstruction forms images of functional information in nuclear medicine applications and the same principles can be applied to modalities such as X-ray computed tomography. This chapter provides a ...
متن کاملBayesian PET image reconstruction
We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Radiation and Plasma Medical Sciences
سال: 2021
ISSN: 2469-7311,2469-7303
DOI: 10.1109/trpms.2020.3014786